A238457 a(n) = |{0 < k <= n: p(n) + k is prime}|, where p(.) is the partition function (A000041).
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 3, 4, 2, 3, 2, 4, 4, 4, 3, 1, 4, 4, 4, 3, 3, 4, 4, 5, 4, 5, 4, 3, 3, 5, 2, 2, 8, 6, 6, 2, 4, 5, 6, 3, 7, 6, 4, 6, 5, 6, 4, 3, 3, 4, 2, 4, 5, 7, 5, 6, 4, 7, 7, 5, 2, 5, 6, 2, 6, 5, 4, 7, 7, 5, 6, 5, 3, 6, 2, 6, 4, 9, 8, 2, 5, 7, 6, 4, 2, 8
Offset: 1
Keywords
Examples
a(5) = 1 since p(5) + 4 = 7 + 4 = 11 is prime. a(30) = 1 since p(30) + 19 = 5604 + 19 = 5623 is prime. a(109) = 1 since p(109) + 63 = 541946240 + 63 = 541946303 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
p[n_,k_]:=PrimeQ[PartitionsP[n]+k] a[n_]:=Sum[If[p[n,k],1,0],{k,1,n}] Table[a[n],{n,1,100}]
Comments