A238509 a(n) = |{0 < k < n: p(n) + p(k) - 1 is prime}|, where p(.) is the partition function (A000041).
0, 1, 1, 2, 2, 3, 2, 1, 1, 2, 1, 2, 3, 4, 1, 4, 5, 2, 1, 5, 2, 1, 1, 3, 5, 2, 3, 2, 2, 4, 7, 3, 2, 2, 5, 6, 3, 7, 3, 3, 4, 3, 3, 2, 2, 4, 7, 4, 8, 3, 9, 4, 6, 4, 3, 7, 3, 2, 3, 4, 5, 3, 7, 4, 3, 5, 1, 9, 10, 6, 8, 2, 3, 3, 6, 6, 3, 1, 2, 7, 1, 6, 5, 2, 6, 8, 3, 4, 1, 1, 1, 9, 12, 3, 2, 3, 8, 4, 3, 2
Offset: 1
Keywords
Examples
a(11) = 1 since p(11) + p(10) - 1 = 56 + 42 - 1 = 97 is prime. a(247) = 1 since p(247) + p(228) - 1 = 182973889854026 + 40718063627362 - 1 = 223691953481387 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
p[n_,k_]:=PrimeQ[PartitionsP[n]+PartitionsP[k]-1] a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments