A239736 Least k > 0 such that p(n)+p(k)-1 is prime, where p(n) is the number of partitions of n.
1, 1, 1, 1, 1, 3, 2, 2, 2, 10, 3, 1, 3, 8, 3, 6, 4, 2, 4, 9, 9, 4, 4, 8, 2, 2, 2, 3, 11, 8, 4, 13, 19, 4, 1, 6, 3, 4, 2, 4, 26, 12, 5, 11, 11, 9, 6, 5, 25, 4, 24, 6, 4, 2, 5, 9, 9, 2, 7, 4, 28, 13, 8, 27, 9, 23, 3, 7, 2, 24, 36, 38, 9, 26, 16, 1
Offset: 2
Keywords
Examples
a(7)=3, since p(7)+p(1)-1=15 and p(7)+p(2)-1=16 are composite, but p(7)+p(3)-1=17 is prime.
Links
- Sean A. Irvine, Table of n, a(n) for n = 2..9999
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014. See Conjecture 4.1(ii).
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, If[PrimeQ[PartitionsP[n] + PartitionsP[k] - 1], Return[k]]]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Dec 12 2018 *)
-
PARI
s=[]; for(n=2, 100, k=1; while(!isprime(numbpart(n)+numbpart(k)-1), k++); s=concat(s, k)); s \\ Colin Barker, Mar 26 2014
Comments