A238477 a(n) = 32*n - 27 for n >= 1. Second column of triangle A238475.
5, 37, 69, 101, 133, 165, 197, 229, 261, 293, 325, 357, 389, 421, 453, 485, 517, 549, 581, 613, 645, 677, 709, 741, 773, 805, 837, 869, 901, 933, 965, 997, 1029, 1061, 1093, 1125, 1157, 1189, 1221, 1253, 1285, 1317, 1349, 1381, 1413, 1445, 1477, 1509, 1541, 1573
Offset: 1
Examples
a(1) = 5 because the Collatz sequence of length 6 is [5, 16, 8, 4, 2, 1], following the pattern udddd, ending in 1, and 5 is the smallest start number following this pattern ending in an odd number. a(2) = 37 with the length 6 Collatz sequence [37, 112, 56, 28, 14, 7] ending in 12 - 5 = 7, and this is the second smallest start number with this sequence pattern ending in an odd number.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
CoefficientList[Series[(5 + 27 x)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
Formula
O.g.f.: x*(5+27*x)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 27 + exp(x)*(32*x - 27).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
Comments