A238495 Number of partitions p of n such that min(p) + (number of parts of p) is not a part of p.
1, 2, 3, 4, 7, 9, 14, 19, 27, 36, 51, 66, 90, 118, 156, 201, 264, 336, 434, 550, 700, 880, 1112, 1385, 1733, 2149, 2666, 3283, 4049, 4956, 6072, 7398, 9009, 10922, 13237, 15970, 19261, 23147, 27790, 33260, 39776, 47425, 56497, 67133, 79685, 94371, 111653
Offset: 1
Examples
a(6) = 9 counts all the 11 partitions of 6 except 42 and 411. From _Gus Wiseman_, Jul 10 2023 (Start) The a(2) = 1 through a(8) = 14 partitions: (2) (3) (4) (5) (6) (7) (8) (21) (22) (32) (33) (43) (44) (31) (41) (42) (52) (53) (221) (51) (61) (62) (222) (322) (71) (321) (331) (332) (2211) (421) (422) (2221) (431) (3211) (521) (2222) (3221) (3311) (4211) (22211) (End)
Crossrefs
Programs
-
Mathematica
Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Length[p] + Min[p]]], {n, 50}] Table[Length[Select[IntegerPartitions[n+1],Median[#]>1&]],{n,30}] (* Gus Wiseman, Jul 10 2023 *)
Formula
Extensions
Formula corrected by Gus Wiseman, Jul 11 2023
Comments