cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238498 Triangle read by rows: T(n,k) = A175836(n)/(A175836(k)* A175836(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 6, 12, 12, 6, 1, 1, 12, 24, 36, 24, 12, 1, 1, 8, 32, 48, 48, 32, 8, 1, 1, 12, 32, 96, 96, 96, 32, 12, 1, 1, 12, 48, 96, 192, 192, 96, 48, 12, 1, 1, 18, 72, 216, 288, 576, 288, 216, 72, 18, 1, 1, 12, 72, 216, 432, 576, 576, 432, 216, 72, 12, 1
Offset: 0

Views

Author

Tom Edgar, Feb 27 2014

Keywords

Comments

We assume that A175836(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Dedekind psi function A001615.
Another name might be the psi-nomial coefficients.

Examples

			The first five terms in the Dedekind psi function are 1,3,4,6,6 and so T(4,2) = 6*4*3*1/((3*1)*(3*1))=8 and T(5,3) = 6*6*4*3*1/((4*3*1)*(3*1))=12.
The triangle begins
1
1  1
1  3  1
1  4  4  1
1  6  8  6  1
1  6  12 12 6 1
		

Crossrefs

Programs

  • Haskell
    a238498 n k = a238498_tabl !! n !! k
    a238498_row n = a238498_tabl !! n
    a238498_tabl = [1] : f [1] a001615_list where
       f xs (z:zs) = (map (div y) $ zipWith (*) ys $ reverse ys) : f ys zs
         where ys = y : xs; y = head xs * z
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p;
    `if`(n<2,1,n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end:
    A238498 := (n,k) -> A175836(n)/(A175836(k)*A175836(n-k)):
    seq(seq(A238498(n,k),k=0..n),n=0..10); # Peter Luschny, Feb 28 2014
  • Mathematica
    DedekindPsi[n_] := Sum[MoebiusMu[n/d] d^2 , {d, Divisors[n]}]/EulerPhi[n];
    (* b = A175836 *) b[n_] := Times @@ DedekindPsi /@ Range[n];
    T[n_, k_] := b[n]/(b[k] b[n-k]);
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jul 02 2019 *)
  • Sage
    q=100 #change q for more rows
    P=[0]+[i*prod([(1+1/x) for x in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
    

Formula

T(n,k) = A175836(n)/(A175836(k)*A175836(n-k)).
T(n,k) = prod_{i=1..n} A001615(i)/(prod_{i=1..k} A001615(i)*prod_{i=1..n-k} A001615(i)).
T(n,k) = A001615(n)/n*(k/A001615(k)*T(n-1,k-1)+(n-k)/A001615(n-k)*T(n-1,k)).
T(n,k) = A238688(n,k)/A238453(n,k).