A238503 Numbers of the form pq + pr + ps + qr + qs + rs where p, q, r, and s are distinct primes.
101, 141, 161, 173, 197, 201, 213, 221, 236, 241, 245, 261, 266, 269, 297, 317, 321, 325, 326, 333, 341, 350, 356, 365, 373, 377, 381, 389, 393, 401, 404, 413, 416, 426, 429, 441, 453, 461, 464, 465, 466, 476, 481, 485, 488, 493, 501, 505, 506
Offset: 1
Keywords
Examples
101 = 2*3 + 2*5 + 2*7 + 3*5 + 3*7 + 5*7.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A238397.
Programs
-
Mathematica
pqrs[{p_,q_,r_,s_}]:=Total[Times@@@Subsets[{p,q,r,s},{2}]]; Take[ Flatten[ pqrs/@Subsets[Prime[Range[20]],{4}]]//Union,50] (* Harvey P. Dale, Jan 17 2021 *)
-
PARI
list(n)=my(v=List()); forprime(s=7,(n-31)\10,forprime(r=5, min((n-6-5*s)\(s+5),s-2), forprime(q=3, min((n-2*r-2*s-r*s)\(s+r+2), r-2), my(S=q+r+s, P=q*r+r*s+q*s); forprime(p=2, min((n-P)\S, q-1), listput(v, p*S+P))))); Set(v)
-
PARI
list(n)=my(v=vectorsmall(n),u=List()); forprime(s=7,(n-31)\10,forprime(r=5, min((n-6-5*s)\(s+5),s-2), forprime(q=3, min((n-2*r-2*s-r*s)\(s+r+2), r-2), my(S=q+r+s, P=q*r+r*s+q*s); forprime(p=2, min((n-P)\S, q-1), v[p*S+P]=1)))); for(i=1,n,if(v[i],listput(u,i))); Vec(u)
Comments