cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238503 Numbers of the form pq + pr + ps + qr + qs + rs where p, q, r, and s are distinct primes.

Original entry on oeis.org

101, 141, 161, 173, 197, 201, 213, 221, 236, 241, 245, 261, 266, 269, 297, 317, 321, 325, 326, 333, 341, 350, 356, 365, 373, 377, 381, 389, 393, 401, 404, 413, 416, 426, 429, 441, 453, 461, 464, 465, 466, 476, 481, 485, 488, 493, 501, 505, 506
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form e2(p, q, r, s) for distinct primes p, q, r, s where e2 is the elementary symmetric polynomial of degree 2. Other sequences are obtained with different numbers of distinct primes and degrees: A000040 for 1 prime, A038609 and A006881 for 2 primes, A124867, A238397, and A007304 for 3 primes.
What is the density of this sequence, and is it less than 1? There are 701917 terms below a million and 7042080 below 10^7.
There are 70307093 terms below 10^8. - Charles R Greathouse IV, Jun 14 2017

Examples

			101 = 2*3 + 2*5 + 2*7 + 3*5 + 3*7 + 5*7.
		

Crossrefs

Cf. A238397.

Programs

  • Mathematica
    pqrs[{p_,q_,r_,s_}]:=Total[Times@@@Subsets[{p,q,r,s},{2}]]; Take[ Flatten[ pqrs/@Subsets[Prime[Range[20]],{4}]]//Union,50] (* Harvey P. Dale, Jan 17 2021 *)
  • PARI
    list(n)=my(v=List()); forprime(s=7,(n-31)\10,forprime(r=5, min((n-6-5*s)\(s+5),s-2), forprime(q=3, min((n-2*r-2*s-r*s)\(s+r+2), r-2), my(S=q+r+s, P=q*r+r*s+q*s); forprime(p=2, min((n-P)\S, q-1), listput(v, p*S+P))))); Set(v)
    
  • PARI
    list(n)=my(v=vectorsmall(n),u=List()); forprime(s=7,(n-31)\10,forprime(r=5, min((n-6-5*s)\(s+5),s-2), forprime(q=3, min((n-2*r-2*s-r*s)\(s+r+2), r-2), my(S=q+r+s, P=q*r+r*s+q*s); forprime(p=2, min((n-P)\S, q-1), v[p*S+P]=1)))); for(i=1,n,if(v[i],listput(u,i))); Vec(u)