cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238539 A fourth-order linear divisibility sequence: a(n) := (1/9)*(2^n + (-1)^n)*(2^(3*n) - (-1)^n).

Original entry on oeis.org

1, 35, 399, 7735, 112871, 1893255, 29593159, 479082695, 7620584391, 122287263175, 1953732901319, 31282632909255, 500338874618311, 8006888009380295, 128098480026087879, 2049669505409577415, 32793961486615474631, 524709388585350492615, 8395302178969583120839
Offset: 1

Views

Author

Peter Bala, Mar 01 2014

Keywords

Comments

This is a divisibility sequence, that is, if n | m then a(n) | a(m). This is a consequence of the following more general result: The polynomials P(n,x,y) := (x^n + y^n)*(x^(3*n) - y^(3*n)) form a divisibility sequence in the polynomial ring Z[x,y]. See the Bala link.
The sequence satisfies a homogeneous linear recurrence of the fourth order. However, it does not belong to the family of linear divisibility sequences of the fourth order studied by Williams and Guy, which have o.g.f.s of the form x*(1 - q*x^2)/Q(x), Q(x) a quartic polynomial and q an integer.
For sequences of a similar type see A238536 through A238541.

Crossrefs

Programs

  • Maple
    seq(1/9*(2^n + (-1)^n)*(2^(3*n) - (-1)^n), n = 1..20);

Formula

a(n) = (1/9)*(2^n + (-1)^n)*(2^(3*n) - (-1)^n) = (1/9)*(4^n - 1)*(8^n - (-1)^n)/(2^n - (-1)^n).
O.g.f.: x*(1 + 28*x + 16*x^2)/((1 - x)*(1 + 2*x)*(1 + 8*x)*(1 - 16*x)).
Recurrence equation: a(n) = 7*a(n-1) + 138*a(n-2) + 112*a(n-4) - 256*a(n-4).