A238539 A fourth-order linear divisibility sequence: a(n) := (1/9)*(2^n + (-1)^n)*(2^(3*n) - (-1)^n).
1, 35, 399, 7735, 112871, 1893255, 29593159, 479082695, 7620584391, 122287263175, 1953732901319, 31282632909255, 500338874618311, 8006888009380295, 128098480026087879, 2049669505409577415, 32793961486615474631, 524709388585350492615, 8395302178969583120839
Offset: 1
Links
- Peter Bala, A family of linear divisibility sequences of order four
- Wikipedia, Divisibility sequence"
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (7,138,112,-256).
Programs
-
Maple
seq(1/9*(2^n + (-1)^n)*(2^(3*n) - (-1)^n), n = 1..20);
Formula
a(n) = (1/9)*(2^n + (-1)^n)*(2^(3*n) - (-1)^n) = (1/9)*(4^n - 1)*(8^n - (-1)^n)/(2^n - (-1)^n).
O.g.f.: x*(1 + 28*x + 16*x^2)/((1 - x)*(1 + 2*x)*(1 + 8*x)*(1 - 16*x)).
Recurrence equation: a(n) = 7*a(n-1) + 138*a(n-2) + 112*a(n-4) - 256*a(n-4).
Comments