A238540 A fourth-order linear divisibility sequence: a(n) := (3^n + 1)*(3^(3*n) - 1)/( (3 + 1)*(3^3 - 1)).
1, 70, 5299, 419020, 33664741, 2719393810, 220069738519, 17820217484440, 1443290970139081, 116902609136432350, 9469004435040169339, 766986472802959676260, 62125826363286791503021, 5032189831214900660779690, 407607319514701058318401759, 33016191346720726553176114480
Offset: 1
Links
- Peter Bala, A family of linear divisibility sequences of order four
- Wikipedia, Divisibility sequence
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (112,-2622,9072,-6561).
Programs
-
Maple
#A238540 seq(1/104*(3^n + 1)*(3^(3*n) - 1), n = 1..20);
-
Mathematica
LinearRecurrence[{112, -2622, 9072, -6561}, {1, 70, 5299, 419020}, 16] (* Jean-François Alcover, Nov 14 2019 *)
Formula
a(n) = (1/104)*(3^n + 1)*(3^(3*n) - 1) = (1/104)*(9^n - 1)*(27^n - 1)/(3^n - 1).
O.g.f.: x*(1 - 42*x + 81*x^2)/((1 - x)*(1 - 3*x)*(1 - 27*x)*(1 - 81*x)).
Recurrence equation: a(n) = 112*a(n-1) - 2622*a(n-2) + 9072*a(n-3) - 6561*a(n-4).
Comments