cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238552 Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X 6 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4), read by rows.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 4, 1, 6, 4, 1, 6, 9, 1, 8, 18, 1, 8, 28, 1, 10, 42, 10, 1, 10, 57, 28, 1, 12, 76, 76, 1, 12, 96, 140, 1, 14, 120, 254, 25, 1, 14, 145, 392, 107, 1, 16, 174, 600, 321, 1, 16, 204, 840, 731, 1, 18, 238, 1170, 1462, 70, 1, 18, 273, 1540, 2610, 366
Offset: 4

Views

Author

Keywords

Examples

			The first 14 rows of T(n,k) are:
.\ k    0      1      2      3     4
n
4       1      2
5       1      2
6       1      4
7       1      4
8       1      6      4
9       1      6      9
10      1      8     18
11      1      8     28
12      1     10     42     10
13      1     10     57     28
14      1     12     76     76
15      1     12     96    140
16      1     14    120    254    25
17      1     14    145    392   107
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := ((3^k + 1) Binomial[n - 3k, k] + Boole[EvenQ[k] || EvenQ[n]]*(3^Quotient[k + 1, 2] + 3^Quotient[k, 2]) * Binomial[(n - 3k - Mod[k, 2] - Mod[n, 2])/2, Quotient[k, 2]])/4; Table[T[n, k], {n, 4, 20}, {k, 0, Floor[n/4]}] // Flatten (* Jean-François Alcover, Oct 06 2017, after Andrew Howroyd *)
  • PARI
    T(n,k)={((3^k+1)*binomial(n-3*k,k) + (k%2==0||n%2==0) * (3^((k+1)\2)+3^(k\2)) * binomial((n-3*k-(k%2)-(n%2))/2,k\2))/4}
    for(n=4,20,for(k=0,floor(n/4), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(28) and beyond from Andrew Howroyd, May 29 2017