A238552 Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X 6 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4), read by rows.
1, 2, 1, 2, 1, 4, 1, 4, 1, 6, 4, 1, 6, 9, 1, 8, 18, 1, 8, 28, 1, 10, 42, 10, 1, 10, 57, 28, 1, 12, 76, 76, 1, 12, 96, 140, 1, 14, 120, 254, 25, 1, 14, 145, 392, 107, 1, 16, 174, 600, 321, 1, 16, 204, 840, 731, 1, 18, 238, 1170, 1462, 70, 1, 18, 273, 1540, 2610, 366
Offset: 4
Examples
The first 14 rows of T(n,k) are: .\ k 0 1 2 3 4 n 4 1 2 5 1 2 6 1 4 7 1 4 8 1 6 4 9 1 6 9 10 1 8 18 11 1 8 28 12 1 10 42 10 13 1 10 57 28 14 1 12 76 76 15 1 12 96 140 16 1 14 120 254 25 17 1 14 145 392 107
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..989
- Christopher Hunt Gribble, C++ program
Crossrefs
Programs
-
Mathematica
T[n_, k_] := ((3^k + 1) Binomial[n - 3k, k] + Boole[EvenQ[k] || EvenQ[n]]*(3^Quotient[k + 1, 2] + 3^Quotient[k, 2]) * Binomial[(n - 3k - Mod[k, 2] - Mod[n, 2])/2, Quotient[k, 2]])/4; Table[T[n, k], {n, 4, 20}, {k, 0, Floor[n/4]}] // Flatten (* Jean-François Alcover, Oct 06 2017, after Andrew Howroyd *)
-
PARI
T(n,k)={((3^k+1)*binomial(n-3*k,k) + (k%2==0||n%2==0) * (3^((k+1)\2)+3^(k\2)) * binomial((n-3*k-(k%2)-(n%2))/2,k\2))/4} for(n=4,20,for(k=0,floor(n/4), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Extensions
Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(28) and beyond from Andrew Howroyd, May 29 2017