A238569 Number of compositions of n avoiding any 3-term arithmetic progression.
1, 1, 2, 3, 7, 11, 19, 28, 53, 83, 140, 201, 332, 486, 775, 1207, 1716, 2498, 3870, 5623, 8020, 11276, 17168, 23323, 34746, 46141, 64879, 90467, 127971, 176201, 242869, 333508, 456683, 606403, 844818, 1125922, 1496466, 2005446, 2737912, 3543506, 4824442
Offset: 0
Keywords
Examples
a(3) = 3: [1,2], [2,1], [3]. a(4) = 7: [1,1,2], [1,2,1], [1,3], [2,1,1], [2,2], [3,1], [4]. a(5) = 11: [1,1,3], [1,2,2], [1,3,1], [1,4], [2,1,2], [2,2,1], [2,3], [3,1,1], [3,2], [4,1], [5]. a(6) = 19: [1,1,2,2], [1,1,4], [1,2,1,2], [1,2,2,1], [1,3,2], [1,4,1], [1,5], [2,1,1,2], [2,1,2,1], [2,1,3], [2,2,1,1], [2,3,1], [2,4], [3,1,2], [3,3], [4,1,1], [4,2], [5,1], [6].
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..85
- Index entries related to non-averaging sequences
Crossrefs
Programs
-
Maple
b:= proc(n, i, o) option remember; `if`(n=0, 1, add( `if`(j in o, 0, b(n-j, i union {j}, select(y->0
2*j-x, i)))), j=1..n)) end: a:= n-> b(n, {}, {}): seq(a(n), n=0..30); -
Mathematica
b[n_, i_List, o_List] := b[n, i, o] = If[n == 0, 1, Sum[If[MemberQ[o, j], 0, b[n - j, i ~Union~ {j}, Select[o ~Union~ (2j-i), 0<# && # <= n &]]], {j, 1, n}]]; a[n_] := b[n, {}, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from Maple *)