A238571 Number of partitions of n avoiding any 3-term arithmetic progression.
1, 1, 2, 2, 4, 5, 6, 8, 12, 12, 19, 23, 27, 34, 43, 49, 62, 74, 88, 104, 127, 145, 176, 199, 239, 272, 324, 378, 430, 490, 583, 654, 750, 876, 988, 1112, 1291, 1441, 1642, 1877, 2121, 2358, 2682, 2977, 3365, 3830, 4237, 4734, 5357, 5868, 6590, 7398, 8182, 9049
Offset: 0
Keywords
Examples
a(3) = 2: [2,1], [3]. a(4) = 4: [2,1,1], [2,2], [3,1], [4]. a(5) = 5: [2,2,1], [3,1,1], [3,2], [4,1], [5]. a(6) = 6: [2,2,1,1], [3,3], [4,1,1], [4,2], [5,1], [6]. a(7) = 8: [3,2,2], [3,3,1], [4,2,1], [4,3], [5,1,1], [5,2], [6,1], [7]. a(8) = 12: [3,3,1,1], [3,3,2], [4,2,1,1], [4,2,2], [4,3,1], [4,4], [5,2,1], [5,3], [6,1,1], [6,2], [7,1], [8].
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..300
- Index entries related to non-averaging sequences
Crossrefs
Cf. A003407 (the same for permutations).
Cf. A178932 (the same for strict partitions).
Cf. A238569 (the same for compositions).
Cf. A238433 (partitions avoiding equidistant 3-term arithmetic progressions).
Cf. A238424 (partitions avoiding three consecutive parts in arithmetic progression).
Cf. A238687.
Programs
-
Mathematica
a[n_] := a[n] = Count[IntegerPartitions[n], P_ /; {} == SequencePosition[P, {_, i_, _, j_, _, k_, _} /; j - i == k - j, 1]]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 29 2021 *)