A238009 Number T(n,k) of equivalence classes of ways of placing k 2 X 2 tiles in an n X 3 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=2, 0<=k<=floor(n/2), read by rows.
1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 1, 3, 8, 3, 1, 3, 12, 8, 1, 4, 18, 22, 6, 1, 4, 24, 40, 22, 1, 5, 32, 73, 66, 10, 1, 5, 40, 112, 146, 48, 1, 6, 50, 172, 292, 174, 20, 1, 6, 60, 240, 516, 448, 116, 1, 7, 72, 335, 860, 1020, 464, 36, 1, 7, 84, 440, 1340, 2016, 1360, 256
Offset: 2
Examples
The first 19 rows of T(n,k) are: n\k 0 1 2 3 4 5 6 7 8 9 10 2 1 1 3 1 1 4 1 2 2 5 1 2 4 6 1 3 8 3 7 1 3 12 8 8 1 4 18 22 6 9 1 4 24 40 22 10 1 5 32 73 66 10 11 1 5 40 112 146 48 12 1 6 50 172 292 174 20 13 1 6 60 240 516 448 116 14 1 7 72 335 860 1020 464 36 15 1 7 84 440 1340 2016 1360 256 16 1 8 98 578 2010 3716 3400 1168 72 17 1 8 112 728 2890 6336 7432 3840 584 18 1 9 128 917 4046 10326 14864 10600 2920 136 19 1 9 144 1120 5502 16016 27536 25344 10600 1280 20 1 10 162 1368 7336 24066 48188 54992 31800 7080 272
Links
- Christopher Hunt Gribble and Andrew Howroyd, Rows n=2..60 of T(n,k) flattened (Rows n=2..20 from Christopher Hunt Gribble)
- Christopher Hunt Gribble, C++ program
Crossrefs
Programs
-
PARI
T(n,k)={(2^k*binomial(n-1*k,k) + ((k%2==0)+(n%2==0||k%2==0)+(k==0)) * 2^((k+1)\2)*binomial((n-1*k-(k%2)-(n%2))/2,k\2))/4} for(n=2,20,for(k=0,floor(n/2), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Extensions
Corrected C++ program and xrefs added by Christopher Hunt Gribble, Apr 25 2015