A238589 Number of partitions p of n such that 2*min(p) is a part of p.
0, 0, 1, 1, 2, 4, 5, 8, 13, 17, 24, 36, 47, 64, 88, 116, 153, 203, 261, 340, 439, 559, 710, 905, 1136, 1427, 1786, 2223, 2756, 3415, 4201, 5167, 6330, 7730, 9413, 11449, 13864, 16767, 20225, 24344, 29228, 35045, 41898, 50029, 59609, 70899, 84165, 99785, 118052
Offset: 1
Examples
a(6) counts these partitions: 42, 321, 2211, 21111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Min[p]]], {n, 50}]
-
PARI
my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023
Formula
G.f.: Sum_{k>=1} x^(3*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 49*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jun 19 2025