A238594 Number of partitions p of n such that 2*min(p) is not a part of p.
1, 2, 2, 4, 5, 7, 10, 14, 17, 25, 32, 41, 54, 71, 88, 115, 144, 182, 229, 287, 353, 443, 545, 670, 822, 1009, 1224, 1495, 1809, 2189, 2641, 3182, 3813, 4580, 5470, 6528, 7773, 9248, 10960, 12994, 15355, 18129, 21363, 25146, 29525, 34659, 40589, 47488, 55473
Offset: 1
Examples
a(6) counts all 11 partitions of 6 except these: 42, 321, 2211, 21111.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (using data from A238589)
Programs
-
Mathematica
Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, 2*Min[p]]], {n, 50}]
-
PARI
seq(n) = {Vec(sum(k=1, n\2+1, x^(2*k-2)*(1 + x - x^(k-1))/prod(j=1, k, 1 - x^j, 1 + O(x^(n-2*k+3))), O(x*x^n)))} \\ Andrew Howroyd, Jan 17 2024
Formula
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3*2^(3/2)*n^(3/2)). - Vaclav Kotesovec, Jun 09 2021
a(n) = Sum_{k>=1} x^(2*k-2)*(1 + x - x^(k-1))/(Product_{j=1..k} (1 - x^j)). - Andrew Howroyd, Jan 17 2024
Comments