A238607 Number of partitions p of 2n such that n - (number of parts of p) is a part of p.
0, 0, 1, 4, 12, 24, 49, 85, 147, 232, 374, 558, 843, 1223, 1774, 2493, 3519, 4835, 6659, 8999, 12144, 16152, 21479, 28186, 36945, 47959, 62126, 79805, 102352, 130286, 165546, 209070, 263461, 330266, 413207, 514486, 639342, 791261, 977301, 1202636, 1477172
Offset: 1
Examples
a(4) counts these partitions of 8: 62, 611, 521, 431.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 30; g[n_] := IntegerPartitions[n]; m[p_, t_] := MemberQ[p, t]; Table[Count[g[2 n], p_ /; m[p, n - Length[p]]], {n, z}] (*A238607*) Table[Count[g[2 n - 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238641*) Table[Count[g[2 n + 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238742*) p[n_, k_] := p[n, k] = If[k == 1 || n == k, 1, If[k > n, 0, p[n-1, k-1] + p[n-k, k]]]; q[n_, k_, e_] := If[n-e < k-1, 0, If[k == 1, If[n == e, 1, 0], p[n-e, k-1]]]; a[n_] := Sum[q[2*n, u, n-u], {u, n-1}]; Array[a, 100] (* Giovanni Resta, Mar 07 2014 *)
Extensions
More terms from Alois P. Heinz, Mar 04 2014