cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238617 Number of partitions of n having standard deviation σ <= 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 10, 14, 15, 20, 23, 30, 33, 42, 44, 55, 58, 71, 78, 91, 99, 118, 124, 148, 155, 187, 202, 229, 244, 279, 290, 327, 344, 397, 427, 475, 501, 558, 597, 665, 714, 776, 824, 898, 948, 1032, 1084, 1245, 1308, 1395, 1452, 1606, 1692, 1807, 1919
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2014

Keywords

Comments

Regarding "standard deviation" see Comments at A238616.

Examples

			There are 11 partitions of 6, whose standard deviations are given by these approximations:  0., 2., 1., 1.41421, 0., 0.816497, 0.866025, 0., 0.5, 0.4, 0, so that a(6) = 9.
		

Crossrefs

Cf. A238616.

Programs

  • Maple
    b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2<=1, 1, 0),
          `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
           m+i*j, s+i^2*j, c+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$3):
    seq(a(n), n=1..50);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    z = 55; g[n_] := g[n] = IntegerPartitions[n]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
    Table[Count[g[n], p_ /; s[p] < 1], {n, z}]   (*A238616*)
    Table[Count[g[n], p_ /; s[p] <= 1], {n, z}]  (*A238617*)
    Table[Count[g[n], p_ /; s[p] == 1], {n, z}]  (*A238618*)
    Table[Count[g[n], p_ /; s[p] > 1], {n, z}]   (*A238619*)
    Table[Count[g[n], p_ /; s[p] >= 1], {n, z}]  (*A238620*)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st.dev's of partitions of 30*)
    b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, If[s/c - (m/c)^2 <= 1, 1, 0], If[i == 1, b[0, 0, m + n, s + n, c + n], Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]]; a[n_] := b[n, n, 0, 0, 0]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)

Formula

a(n) + A238619(n) = A000041(n).