A238644 Number of binary words on {H,T} that end in THTH but do not contain the contiguous subsequence HTHH.
0, 0, 0, 0, 1, 2, 3, 6, 11, 19, 34, 62, 112, 202, 365, 659, 1189, 2146, 3874, 6993, 12623, 22786, 41131, 74245, 134019, 241917, 436683, 788254, 1422873, 2568420, 4636240, 8368850, 15106563, 27268770, 49222700, 88851613, 160385536, 289511009, 522594658, 943332613, 1702804277
Offset: 0
Keywords
Examples
a(7)=6 because we have: TTTTHTH, THTTHTH, THHTHTH, HTTTHTH, HHTTHTH, HHHTHTH.
Links
- Penney Ante, Counterintuitive Probabilities in Coin Tossing, Bay Area Circle for Teachers Summer Workshop. [broken link]
- Raymond S. Nickerson, Penney Ante: Counterintuitive Probabilities in Coin Tossing, 2008.
- Eric Weisstein's World of Mathematics, Coin Tossing
- Wikipedia, Penney's game
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,0,0,1).
Crossrefs
Cf. A171861.
Programs
-
Mathematica
nn=40;CoefficientList[Series[(x^4+x^7)/(1-2x+x^2-x^3-x^6),{x,0,nn}],x] LinearRecurrence[{2,-1,1,0,0,1},{0,0,0,0,1,2,3,6},50]
Formula
G.f.: G(x) = (x^4 + x^7)/(1 - 2x + x^2 - x^3 - x^6). We note G(1/2) = 9/14.
Comments