cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238658 Number of partitions of n having population standard deviation < 2.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 19, 25, 33, 44, 57, 72, 92, 114, 143, 179, 216, 267, 321, 389, 470, 562, 668, 798, 946, 1100, 1295, 1521, 1759, 2059, 2392, 2742, 3206, 3674, 4172, 4831, 5566, 6265, 7115, 8089, 9152, 10381, 11664, 13131, 14927, 16666, 18565, 20977
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2014

Keywords

Examples

			There are 22 partitions of 8, whose population standard deviations are given by these approximations:  0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 19.
		

Crossrefs

Programs

  • Mathematica
    z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
    Table[Count[g[n], p_ /; s[p] < 2], {n, z}]   (* A238658 *)
    Table[Count[g[n], p_ /; s[p] <= 2], {n, z}]  (* A238659 *)
    Table[Count[g[n], p_ /; s[p] == 2], {n, z}]  (* A238660 *)
    Table[Count[g[n], p_ /; s[p] > 2], {n, z}]   (* A238661 *)
    Table[Count[g[n], p_ /; s[p] >= 2], {n, z}]  (* A238662 *)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
    ListPlot[Sort[t[30]]] (* plot of st deviations of partitions of 30 *)
    (* Second program: *)
    b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, If[s/c - (m/c)^2 >= 4, 1, 0], If[i == 1, b[0, 0, m + n, s + n, c + n], Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]];
    a[n_] := PartitionsP[n] - b[n, n, 0, 0, 0];
    Array[a, 50] (* Jean-François Alcover, May 27 2021, after Alois P. Heinz *)

Formula

a(n) + A238662(n) = A000041(n).