cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238709 Triangular array: t(n,k) = number of partitions p = {x(1) >= x(2) >= ... >= x(k)} such that min(x(j) - x(j-1)) = k.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 4, 1, 0, 1, 7, 1, 1, 0, 1, 10, 2, 0, 1, 0, 1, 16, 2, 1, 0, 1, 0, 1, 22, 3, 1, 1, 0, 1, 0, 1, 32, 4, 2, 0, 1, 0, 1, 0, 1, 44, 5, 2, 1, 0, 1, 0, 1, 0, 1, 62, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 83, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 113, 10, 4, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2014

Keywords

Comments

The first two columns are essentially A047967 and A238708. Counting the top row as row 2, the sum of numbers in row n is A000041(n) - 1.

Examples

			row 2:  1
row 3:  1 ... 1
row 4:  3 ... 0 ... 1
row 5:  4 ... 1 ... 0 ... 1
row 6:  7 ... 1 ... 1 ... 0 ... 1
row 7:  10 .. 2 ... 0 ... 1 ... 0 ... 1
row 8:  16 .. 2 ... 1 ... 0 ... 1 ... 0 ... 1
row 9:  22 .. 3 ... 1 ... 1 ... 0 ... 1 ... 0 ... 1
Let m = min(x(j) - x(j-1)); then for row 5, the 4 partitions with m = 0 are 311, 221, 2111, 11111; the 1 partition with m = 1 is 32, and the 1 partition with m = 3 is 41.
		

Crossrefs

Programs

  • Mathematica
    z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Min[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v]
    TableForm[v]

A238354 Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with minimal ascent k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 8, 1, 1, 0, 1, 0, 0, 11, 2, 0, 1, 0, 1, 0, 0, 17, 2, 1, 0, 1, 0, 1, 0, 0, 23, 3, 1, 1, 0, 1, 0, 1, 0, 0, 33, 4, 2, 0, 1, 0, 1, 0, 1, 0, 0, 45, 5, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 63, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 84, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 114, 10, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Comments

Column k=0: T(n,0) = 1 + A047967(n).
Column k=1 is A238708.
Row sums are A000041.

Examples

			Triangle starts:
  00:    1;
  01:    1,  0;
  02:    2,  0, 0;
  03:    2,  1, 0, 0;
  04:    4,  0, 1, 0, 0;
  05:    5,  1, 0, 1, 0, 0;
  06:    8,  1, 1, 0, 1, 0, 0;
  07:   11,  2, 0, 1, 0, 1, 0, 0;
  08:   17,  2, 1, 0, 1, 0, 1, 0, 0;
  09:   23,  3, 1, 1, 0, 1, 0, 1, 0, 0;
  10:   33,  4, 2, 0, 1, 0, 1, 0, 1, 0, 0;
  11:   45,  5, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0;
  12:   63,  6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0;
  13:   84,  8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0;
  14:  114, 10, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0;
  15:  150, 13, 4, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0;
  ...
The 11 partitions of 6 together with their minimal ascents are:
  01:  [ 1 1 1 1 1 1 ]   0
  02:  [ 1 1 1 1 2 ]     0
  03:  [ 1 1 1 3 ]       0
  04:  [ 1 1 2 2 ]       0
  05:  [ 1 1 4 ]         0
  06:  [ 1 2 3 ]         1
  07:  [ 1 5 ]           4
  08:  [ 2 2 2 ]         0
  09:  [ 2 4 ]           2
  10:  [ 3 3 ]           0
  11:  [ 6 ]             0
There are 8 partitions of 6 with min ascent 0, 1 with min ascents 1, 2, and 4, giving row 6 of the triangle: 8, 1, 1, 0, 1, 0, 0.
		

Crossrefs

Cf. A238353 (partitions by maximal ascent).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1/x, `if`(i<1, 0,
          b(n, i-1, t)+`if`(i>n, 0, (p->`if`(t=0, p, add(coeff(
           p, x, j)*x^`if`(j<0, t-i, min(j, t-i)),
           j=-1..degree(p))))(b(n-i, i, i)))))
        end:
    T:= n->(p->seq(coeff(p, x, k)+`if`(k=0, 1, 0), k=0..n))(b(n$2, 0)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1/x, If[i<1, 0, b[n, i-1, t]+If[i>n, 0, Function[{p}, If[t == 0, p, Sum[Coefficient[p, x, j]*x^If[j<0, t-i, Min[j, t-i]], {j, -1, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, k]+If[k == 0, 1, 0], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)
Showing 1-2 of 2 results.