A238710 Triangular array: t(n,k) = number of partitions p = {x(1) >= x(2) >= ... >= x(k)} such that max(x(j) - x(j-1)) = k.
1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 3, 3, 2, 1, 1, 1, 6, 3, 2, 1, 1, 3, 6, 6, 2, 2, 1, 1, 2, 10, 6, 5, 2, 2, 1, 1, 3, 11, 11, 6, 4, 2, 2, 1, 1, 1, 16, 13, 10, 5, 4, 2, 2, 1, 1, 5, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 1, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 3, 27, 34
Offset: 1
Examples
row 2: 1 row 3: 1 ... 1 row 4: 2 ... 1 ... 1 row 5: 1 ... 3 ... 1 ... 1 row 6: 3 ... 3 ... 2 ... 1 ... 1 row 7: 1 ... 6 ... 3 ... 2 ... 1 ... 1 row 8: 3 ... 6 ... 6 ... 2 ... 2 ... 1 ... 1 row 9: 2 ... 10 .. 6 ... 5 ... 2 ... 2 ... 1 ... 1 Let m = max(x(j) - x(j-1)); then for row 5, the 1 partition with m = 0 is 11111; the 3 partitions with m = 1 are 32, 221, 2111; the 1 partition with m = 2 is 311, and the 1 partition with m = 3 is 41.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Max[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v] TableForm[v]
Comments