cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238728 Number of standard Young tableaux with n cells where the largest value n is contained in the last row.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 41, 107, 337, 1066, 3691, 12962, 49061, 188894, 766845, 3182844, 13758383, 60858842, 278312475, 1301323108, 6258671365, 30742575588, 154785692507, 794888735945, 4173162573277, 22318859784416, 121767607626621, 676010926754742
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 03 2014

Keywords

Comments

a(0) = 1 by convention.
Also number of ballot sequences of length n where the last position has a maximal value.
Main diagonal of A238727.

Examples

			a(4) = 7 counts the following tableaux:
  [1]  [1 2]  [1 3]  [1 2 3]  [1 2]  [1 3]  [1 2 3 4]
  [2]  [3]    [2]    [4]      [3 4]  [2 4]
  [3]  [4]    [4]
  [4]
corresponding to the following ballot sequences: [1,2,3,4], [1,1,2,3], [1,2,1,3], [1,1,1,2], [1,1,2,2], [1,2,1,2], [1,1,1,1].
		

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= l->`if`(l=[], 1, h(subsop(-1=`if`(l[-1]=1, [][], l[-1]-1), l))):
    b:= proc(n, i, l) `if`(n=0 or i=1, g([l[], 1$n]),
          add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)) end:
    a:= n-> b(n, n, []):
    seq(a(n), n=0..28);
  • Mathematica
    h[l_List] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[l_List] := If[l == {}, 1, h[If[Last[l] == 1, Most[l], Append[Most[l], Last[l]-1]]]]; b[n_, i_, l_List] := If[n == 0 || i == 1, g[Join[l, Array[1&, n]]], Sum[b[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Feb 12 2015, after Maple *)

A246818 Number of standard Young tableaux with 2n cells where n is the largest value in the last row.

Original entry on oeis.org

1, 0, 1, 4, 32, 277, 3179, 41799, 632365, 10922385, 210953381, 4498975425, 105131807571, 2672061475343, 73358721633794, 2163013965362752, 68174082537113173, 2287395123402364673, 81397403660409278779, 3061825168335759481187, 121385088042529743488517, 5058460899905730365609710
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Sep 04 2014

Keywords

Comments

Also the number of ballot sequences of length 2n having the last occurrence of the maximal value at position n.

Crossrefs

Cf. A238727.

Formula

a(n) = A238727(2n,n).
Showing 1-2 of 2 results.