A238747 Row n of table gives prime metasignature of n: count total appearances of each distinct integer that appears in the prime signature of n, then arrange totals in nonincreasing order.
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1
Offset: 2
Examples
The prime signature of 72 (2^3*3^2) is {3,2}. The numbers 3 and 2 each appear once; therefore, the prime metasignature of 72 is {1,1}. The prime signature of 120 (2^3*3*5) is {3,1,1}. 3 appears 1 time and 1 appears 2 times; therefore, the prime metasignature of 120 is {2,1}.
Comments