cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238754 Triangle read by rows: T(n,k) = A059383(n)/(A059383(k)*A059383(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 15, 1, 1, 80, 80, 1, 1, 240, 1280, 240, 1, 1, 624, 9984, 9984, 624, 1, 1, 1200, 49920, 149760, 49920, 1200, 1, 1, 2400, 192000, 1497600, 1497600, 192000, 2400, 1, 1, 3840, 614400, 9216000, 23961600, 9216000, 614400, 3840, 1, 1, 6480, 1658880
Offset: 0

Views

Author

Tom Edgar, Mar 04 2014

Keywords

Comments

We assume that A059383(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_4 given in A059377.
Another name might be the 4-totienomial coefficients.

Examples

			The first five terms in the fourth Jordan totient function are 1,15,80,240,624 and so T(4,2) = 240*80*15*1/((15*1)*(15*1))=1280 and T(5,3) = 624*240*80*15*1/((80*15*1)*(15*1))=9984.
The triangle begins
1
1 1
1 15  1
1 80  80   1
1 240 1280 240  1
1 624 9984 9984 624 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^4*prod([1-1/p^4 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059383(n)/(A059383(k)* A059383(n-k)).
T(n,k) = prod_{i=1..n} A059377(i)/(prod_{i=1..k} A059377(i)*prod_{i=1..n-k} A059377(i)).
T(n,k) = A059377(n)/n*(k/A059377(k)*T(n-1,k-1)+(n-k)/A059377(n-k)*T(n-1,k)).