A238761 Subtriangle of the generalized ballot numbers, T(n,k) = A238762(2*k-1,2*n-1), 1<=k<=n, read by rows.
1, 2, 3, 3, 8, 10, 4, 15, 30, 35, 5, 24, 63, 112, 126, 6, 35, 112, 252, 420, 462, 7, 48, 180, 480, 990, 1584, 1716, 8, 63, 270, 825, 1980, 3861, 6006, 6435, 9, 80, 385, 1320, 3575, 8008, 15015, 22880, 24310, 10, 99, 528, 2002, 6006, 15015, 32032, 58344, 87516, 92378
Offset: 1
Examples
[n\k 1 2 3 4 5 6 7 ] [1] 1, [2] 2, 3, [3] 3, 8, 10, [4] 4, 15, 30, 35, [5] 5, 24, 63, 112, 126, [6] 6, 35, 112, 252, 420, 462, [7] 7, 48, 180, 480, 990, 1584, 1716.
Programs
-
Maple
binom2 := proc(n, k) local h; h := n -> (n-((1-(-1)^n)/2))/2; n!/(h(n-k)!*h(n+k)!) end: A238761 := (n, k) -> binom2(n+k, n-k+1)*(n-k+1)/(n+k): seq(print(seq(A238761(n, k), k=1..n)), n=1..7);
-
Mathematica
h[n_] := (n - ((1 - (-1)^n)/2))/2; binom2[n_, k_] := n!/(h[n-k]! h[n+k]!); T[n_, k_] := binom2[n+k, n-k+1] (n-k+1)/(n+k); Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2019, from Maple *)
-
Sage
@CachedFunction def ballot(p, q): if p == 0 and q == 0: return 1 if p < 0 or p > q: return 0 S = ballot(p-2, q) + ballot(p, q-2) if q % 2 == 1: S += ballot(p-1, q-1) return S A238761 = lambda n, k: ballot(2*k-1, 2*n-1) for n in (1..7): [A238761(n, k) for k in (1..n)]