A238780 Number of palindromic partitions of n whose greatest part has multiplicity 4.
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 2, 5, 4, 7, 5, 10, 8, 14, 11, 20, 16, 26, 21, 37, 31, 48, 40, 65, 55, 85, 72, 113, 97, 145, 125, 190, 165, 242, 211, 313, 274, 396, 348, 505, 446, 633, 561, 801, 713, 998, 890, 1249, 1118, 1548, 1389, 1922, 1730
Offset: 0
Examples
a(8) counts these partitions (written as palindromes): 3333, 11222211.
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &] Table[p[n, 1], {n, 1, 12}] t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *) Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments