A238782 Number of palindromic partitions of n whose least part has multiplicity 2.
0, 1, 0, 2, 1, 3, 2, 5, 3, 9, 5, 11, 9, 18, 12, 25, 18, 35, 26, 48, 36, 67, 50, 87, 69, 119, 91, 157, 123, 206, 162, 266, 213, 349, 277, 443, 360, 572, 460, 725, 590, 919, 750, 1156, 950, 1456, 1195, 1812, 1502, 2263, 1872, 2802, 2334, 3468, 2892, 4267, 3574
Offset: 1
Examples
a(8) counts these partitions (written as palindromes): 161, 44, 422, 1331, 12221.
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] Table[p[n, 1], {n, 1, 12}] t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments