A238783 Number of palindromic partitions of n whose least part has multiplicity 3.
0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 2, 2, 2, 1, 5, 1, 5, 3, 8, 2, 10, 4, 13, 6, 16, 6, 25, 7, 28, 11, 38, 13, 48, 16, 61, 22, 75, 25, 100, 30, 119, 41, 153, 47, 186, 59, 234, 73, 283, 87, 356, 106, 426, 132, 528, 154, 639, 186, 781, 227, 935, 271, 1143, 322, 1362
Offset: 1
Examples
a(9) counts these partitions (written as palindromes): 333, 31113.
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] Table[p[n, 1], {n, 1, 12}] t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments