A238784 Number of palindromic partitions of n whose least part has multiplicity 4.
0, 0, 0, 1, 0, 1, 1, 3, 1, 3, 3, 7, 4, 9, 6, 15, 10, 19, 15, 30, 21, 39, 30, 56, 41, 75, 58, 103, 77, 132, 106, 181, 139, 231, 185, 307, 241, 392, 314, 508, 406, 643, 523, 826, 665, 1037, 849, 1313, 1070, 1638, 1350, 2057, 1689, 2547, 2112, 3172, 2622, 3902
Offset: 1
Examples
a(12) counts these 7 partitions (written as palindromes): 11811, 114411, 22422, 1124211, 3333, 1132311, 11222211.
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] Table[p[n, 1], {n, 1, 12}] t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments