cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238831 a(n) = 0 if n <= 2; thereafter a(n) = A238827(n) + A238830(n-2).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 8, 21, 49, 124, 295, 735, 1789, 4428, 10874, 26836, 66062, 162838, 401081, 988225, 2434388, 5997403, 14774547, 36397880, 89667011, 220898267, 544190131, 1340632638, 3302695932, 8136311688, 20044096016, 49379354928, 121647818677, 299683787423, 738281805364, 1818783831517
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); [0,0,0,0,0] cat Coefficients(R! -x^6*(x-1)*(2*x+1)*(x^2+x+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1; t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
    a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
    i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
    if n <= 2 then t1[n] else
    i(n-2)+b(n-1)+r(n); fi; end proc;
    [seq(i(n),n=1..32)]; # A238830
    q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
    [seq(q(n),n=1..45)]; # A238831
  • Mathematica
    CoefficientList[Series[- x^5 (x - 1) (2 x + 1) (x^2 + x + 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
  • PARI
    concat([0,0,0,0,0], Vec(-x^6*(x-1)*(2*x+1)*(x^2+x+1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
    

Formula

G.f.: -x^6*(x-1)*(2*x+1)*(x^2+x+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014