A230640 Let M(1)=0 and for n>1, B(n)=(M(ceiling(n/2))+M(floor(n/2))+2)/2, M(n)=3^B(n)+M(floor(n/2))+1. This sequence gives M(n).
0, 4, 28, 248, 129140168, 68630377364912, 2088595827392656793085408064780643444068898148936888424953199350296
Offset: 1
Links
- Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
Crossrefs
Programs
-
Maple
f:=proc(n) option remember; local B, M; if n<=1 then RETURN([0, 0]); else B:=(f(ceil(n/2))[2] + f(floor(n/2))[2] + 2)/2; M:=3^B+f(floor(n/2))[2]+1; RETURN([B, M]); fi; end proc; [seq(f(n)[2], n=1..7)];
Comments