A238859 Compositions with subdiagonal growth: number of compositions (p0, p1, p2, ...) of n with pi - p0 <= i.
1, 1, 2, 4, 7, 14, 26, 51, 99, 195, 383, 759, 1504, 2988, 5944, 11840, 23602, 47084, 93975, 187647, 374812, 748857, 1496487, 2991017, 5978900, 11952780, 23897506, 47782081, 95543378, 191053334, 382052880, 764019152, 1527898772, 3055572646, 6110782652, 12220980359
Offset: 0
Keywords
Examples
There are a(6) = 26 such compositions of 6: 01: [ 1 1 1 1 1 1 ] 02: [ 1 1 1 1 2 ] 03: [ 1 1 1 2 1 ] 04: [ 1 1 1 3 ] 05: [ 1 1 2 1 1 ] 06: [ 1 1 2 2 ] 07: [ 1 1 3 1 ] 08: [ 1 2 1 1 1 ] 09: [ 1 2 1 2 ] 10: [ 1 2 2 1 ] 11: [ 1 2 3 ] 12: [ 2 1 1 1 1 ] 13: [ 2 1 1 2 ] 14: [ 2 1 2 1 ] 15: [ 2 1 3 ] 16: [ 2 2 1 1 ] 17: [ 2 2 2 ] 18: [ 2 3 1 ] 19: [ 3 1 1 1 ] 20: [ 3 1 2 ] 21: [ 3 2 1 ] 22: [ 3 3 ] 23: [ 4 1 1 ] 24: [ 4 2 ] 25: [ 5 1 ] 26: [ 6 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0, add(b(n-j, j+1), j=1..n), add(b(n-j, i+1), j=1..min(n,i)))) end: a:= n-> b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Mar 25 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j+1], {j, 1, n}], Sum[ b[n-j, i+1], {j, 1, Min[n, i]}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
Formula
a(n) ~ c * 2^n, where c = 1/2 - QPochhammer(1/2)/2 = 0.3556059524566987893605501390353846099555440475796571079426294669... - Vaclav Kotesovec, May 01 2014, updated Mar 17 2024