A238867 Number of partitions of n where the difference between consecutive parts is at most 7.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 95, 125, 162, 210, 268, 344, 434, 549, 688, 861, 1069, 1328, 1637, 2016, 2472, 3023, 3682, 4479, 5424, 6558, 7905, 9508, 11404, 13657, 16307, 19440, 23123, 27454, 32526, 38479, 45424, 53545, 63006, 74024, 86824, 101701, 118931, 138899, 161983, 188656, 219419, 254895, 295709
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=0..min(7, n/i)))) end: g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i))) end: a:= n-> add(g(n, k), k=0..n): seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[7, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
PARI
N=66; q = 'q + O('q^N); Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(8*i))/(1-q^i) ) ) )
Formula
G.f.: 1 + sum(k>=1, q^k/(1-q^k) * prod(i=1..k-1, (1-q^(8*i))/(1-q^i) ) ).
a(n) = Sum_{k=0..7} A238353(n,k). - Alois P. Heinz, Mar 09 2014
a(n) ~ 7^(1/4) * exp(Pi*sqrt(7*n/12)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jan 26 2022
Comments