A238869 Number of partitions of n where the difference between consecutive parts is at most 9.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 131, 170, 221, 283, 364, 461, 586, 737, 926, 1154, 1439, 1779, 2199, 2703, 3317, 4051, 4942, 6001, 7278, 8796, 10610, 12760, 15323, 18344, 21928, 26148, 31127, 36971, 43848, 51890, 61321, 72327, 85183, 100149, 117588, 137827, 161343, 188583, 220139, 256607, 298761, 347360
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=0..min(9, n/i)))) end: g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i))) end: a:= n-> add(g(n, k), k=0..n): seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[9, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *) Table[Count[IntegerPartitions[n],?(Max[Abs[Differences[#]]]<10&)],{n,0,60}] (* _Harvey P. Dale, Nov 24 2024 *)
-
PARI
N=66; q = 'q + O('q^N); Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(10*i))/(1-q^i) ) ) )
Formula
G.f.: 1 + sum(k>=1, q^k/(1-q^k) * prod(i=1..k-1, (1-q^(10*i))/(1-q^i) ) ).
a(n) = Sum_{k=0..9} A238353(n,k). - Alois P. Heinz, Mar 09 2014
a(n) ~ 3^(1/4) * exp(Pi*sqrt(3*n/5)) / (4 * 5^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jan 26 2022
Comments