A238873 Number of superdiagonal partitions: partitions (p1, p2, p3, ...) of n such that pi >= i.
1, 1, 1, 2, 3, 3, 5, 7, 9, 11, 14, 19, 25, 31, 38, 46, 59, 73, 92, 112, 135, 162, 196, 237, 289, 349, 417, 496, 587, 691, 820, 970, 1151, 1357, 1598, 1870, 2183, 2537, 2952, 3433, 3997, 4644, 5393, 6248, 7220, 8318, 9566, 10981, 12605, 14457, 16582, 19002, 21767, 24886, 28424, 32396, 36873, 41901, 47579, 53974, 61221
Offset: 0
Keywords
Examples
The a(13) = 31 such partitions of 13 are: 01: [ 1 2 3 7 ] 02: [ 1 2 4 6 ] 03: [ 1 2 5 5 ] 04: [ 1 2 10 ] 05: [ 1 3 3 6 ] 06: [ 1 3 4 5 ] 07: [ 1 3 9 ] 08: [ 1 4 4 4 ] 09: [ 1 4 8 ] 10: [ 1 5 7 ] 11: [ 1 6 6 ] 12: [ 1 12 ] 13: [ 2 2 3 6 ] 14: [ 2 2 4 5 ] 15: [ 2 2 9 ] 16: [ 2 3 3 5 ] 17: [ 2 3 4 4 ] 18: [ 2 3 8 ] 19: [ 2 4 7 ] 20: [ 2 5 6 ] 21: [ 2 11 ] 22: [ 3 3 3 4 ] 23: [ 3 3 7 ] 24: [ 3 4 6 ] 25: [ 3 5 5 ] 26: [ 3 10 ] 27: [ 4 4 5 ] 28: [ 4 9 ] 29: [ 5 8 ] 30: [ 6 7 ] 31: [ 13 ]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 132 terms from Joerg Arndt)
- M. Archibald, A. Blecher, S. Elizalde, and A. Knopfmacher, Subdiagonal and superdiagonal partitions, Afr. Mat. 36, 77 (2025). See p. 5.
Crossrefs
Cf. A219282 (superdiagonal compositions), A238394 (strictly superdiagonal partitions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A238875 (subdiagonal partitions), A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts).