A238881 Number of odd primes p < 2*n with prime(n*(p+1)/2) + n*(p+1)/2 prime.
0, 1, 1, 0, 0, 2, 1, 3, 1, 2, 2, 5, 2, 3, 2, 4, 3, 5, 2, 3, 2, 4, 1, 8, 4, 4, 4, 3, 2, 5, 2, 4, 4, 4, 4, 8, 2, 4, 2, 5, 4, 6, 3, 2, 6, 6, 3, 11, 6, 10, 4, 8, 2, 11, 4, 7, 4, 7, 2, 12, 4, 6, 2, 6, 3, 8, 3, 5, 8, 12, 6, 12, 4, 15, 8, 11, 5, 12, 2, 11
Offset: 1
Keywords
Examples
a(7) = 1 since 11 and prime(7*(11+1)/2) + 7*(11+1)/2 = prime(42) + 42 = 181 + 42 = 223 are both prime. a(23) = 1 since 7 and prime(23*(7+1)/2) + 23*(7+1)/2 = prime(92) + 92 = 479 + 92 = 571 are both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28--Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169--187. (See Conjecture 3.21(i) and note that the typo 2k+1 there should be 2k-1.)
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..7000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[n_]:=PrimeQ[Prime[n]+n] p[k_,n_]:=PQ[(Prime[k]+1)/2*n] a[n_]:=Sum[If[p[k,n],1,0],{k,2,PrimePi[2n-1]}] Table[a[n],{n,1,80}]
-
PARI
a(n) = {my(nb = 0); forprime(p=3, 2*n, if (isprime(prime(n*(p+1)/2) + n*(p+1)/2), nb++);); nb;} \\ Michel Marcus, Sep 21 2015
Comments