A238894 Irregular triangle of the number of times that sums +- 3 +- 5 +- 7 +- 11 +-...+- prime(2n+1) equal an even number in the range -d to d, where d = 3 + 5 + 7 + 11 +...+ prime(2n+1).
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0
Offset: 1
Examples
The first row of the irregular triangle is {1, 0, 0, 1, 0, 1, 0, 0, 1} because the sums +- 3 +- 5 form the numbers -8, -2, 2, and 8. The odd numbers are suppressed.
Links
- T. D. Noe, Rows n = 1..15 of irregular triangle, flattened
- T. D. Noe, Extremal Sums of Sequences
Crossrefs
Cf. A083309.
Programs
-
Mathematica
nMax = 10; d = {1, 0, 0, 1}; t = {}; Do[p = Prime[n + 1]; d = PadLeft[d, Length[d] + p] + PadRight[d, Length[d] + p]; If[0 == Mod[n, 2], AppendTo[t, d]], {n, 2, nMax}]; Flatten[t]
Comments