A238900 Least k such that one of 2^n +- 2^k +- 1 is prime, where 0 < k < n, or 0 if there is no such prime.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 12, 2, 11, 1, 1, 1, 1, 2, 3, 9, 5, 2, 3, 3, 3, 4, 5, 4, 8, 3, 7, 4, 2, 6, 17, 14, 6, 12, 2, 5, 1, 2, 3, 6, 11, 5, 1, 16, 8, 8, 20, 2, 1, 5, 7, 19, 6, 4, 19, 8, 5, 4, 5, 3, 9, 6, 4, 3, 13, 1, 24
Offset: 2
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 2..10000 (first 1999 terms from T. D. Noe)
Crossrefs
Cf. A196697.
Programs
-
Mathematica
Table[c1 = 2^n; k = 1; While[c2 = 2^k; k < n && ! (PrimeQ[c1 + c2 + 1] || PrimeQ[c1 + c2 - 1] || PrimeQ[c1 - c2 + 1] || PrimeQ[c1 - c2 - 1]), k++]; If[k == n, 0, k], {n, 2, 100}]
Comments