A238903 Integers k such that (k^2 + (k+1)^2) has no square proper substring.
0, 1, 3, 6, 11, 18, 36, 43, 56, 61, 106, 136, 168, 181, 206, 411, 431, 511, 518, 536, 606, 613, 1056, 1068, 1388, 1631, 1636, 1668, 1686, 1693, 1806, 1813, 1956, 1981, 2068, 2081, 3363, 3411, 3418, 3631, 3693, 3763, 4106, 4331, 5136, 5318, 5411, 5606, 5868, 6011, 6036, 6236, 6238, 6256, 6431, 6456, 6581, 10568, 10668, 10813, 11581, 11588, 11806, 11888
Offset: 1
Examples
1^2 + 2^2 = 5, 3^2 + 4^2 = 25, 6^2 + 7^2 = 85.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(m) local n,i,j,S; n:= m^2 + (m+1)^2; S:= {seq(seq(floor((n mod 10^i)/10^j),j=0..i-1),i=1 .. ilog10(n)+1)} minus {n}; not ormap(issqr,S); end proc: select(filter, [$0..20000]); # Robert Israel, Dec 09 2024
Comments