cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238917 Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 26, 142, 544, 1826, 5651, 16859, 49739, 147605, 437656, 1292876, 3795660, 11066720, 32052260, 92323188, 264835528, 757301423, 2159899295, 6146377790, 17454698660, 49473876635, 139980358007, 395414558802, 1115322187106, 3141769710776
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 07 2014

Keywords

Examples

			a(7) = 26: 7234561, 7234651, 7235461, 7236541, 7243561, 7243651, 7254361, 7256341, 7264531, 7265431, 7324561, 7324651, 7325461, 7326541, 7432561, 7432651, 7452361, 7462531, 7534261, 7536241, 7543261, 7564231, 7634521, 7635421, 7643521, 7654321.
a(8) = 142: 18345672, 18345762, 18346572, ..., 78563412, 78645312, 78654312.
		

Crossrefs

Column k=6 of A238889.

Programs

  • Maple
    gf:= -(x^79 +x^78 +2*x^77 -2*x^76 -4*x^75 -2*x^74 -2*x^73 -4*x^72 -2*x^71 -16*x^70 -10*x^69 -8*x^68 +2*x^67 +6*x^66 -2*x^65 +34*x^64 +82*x^63 +248*x^62 +114*x^61 +360*x^60 -176*x^59 +16*x^58 -613*x^57 -241*x^56 +286*x^55 +200*x^54 +812*x^53 -304*x^52 -2614*x^51 -6192*x^50 -1748*x^49 -2174*x^48 +3692*x^47 +4660*x^46 +8104*x^45 -2394*x^44 -6262*x^43 -4118*x^42 -8486*x^41 -2952*x^40 +12820*x^39 +22770*x^38 +6232*x^37
    +18124*x^36 +16806*x^35 -8932*x^34 -17752*x^33 -4328*x^32 -688*x^31 -11856*x^30 +1494*x^29 +7926*x^28 -1271*x^27 -15619*x^26 -17708*x^25 -10526*x^24 -15064*x^23 -5448*x^22 +4982*x^21 +7232*x^20 +6266*x^19 +4794*x^18 +4536*x^17 -1642*x^16 -4844*x^15 -1982*x^14 +1702*x^13 +3180*x^12 +2406*x^11 +2236*x^10 +1808*x^9 +844*x^8 -232*x^7 -712*x^6 -427*x^5 -23*x^4 +132*x^3 +130*x^2 +90*x +26)*x^7 /
    (-x^96 -2*x^95 -5*x^94 -2*x^93 +x^92 +4*x^91 +x^90 -6*x^89 +7*x^88 +22*x^87 +29*x^86 +33*x^85 +91*x^84 +80*x^83 +145*x^82 -10*x^81 -131*x^80 -408*x^79 -373*x^78 -190*x^77 +37*x^76 -116*x^75 -944*x^74 -1228*x^73 -3013*x^72 -912*x^71 -41*x^70 +5598*x^69 +6515*x^68 +5412*x^67 +313*x^66 -6440*x^65 -6653*x^64 +8601*x^63 +33249*x^62
    +25690*x^61 +16607*x^60 -20970*x^59 -36849*x^58 -58454*x^57 -2951*x^56 +45112*x^55 +57779*x^54 +50354*x^53 -7307*x^52 -120264*x^51 -203634*x^50 -94356*x^49 -44544*x^48 -80*x^47 +29346*x^46 +69552*x^45 -7775*x^44 -30206*x^43 +20425*x^42 +98686*x^41 +199971*x^40 +199712*x^39 +213579*x^38 +115272*x^37 +13389*x^36 -79542*x^35 -80901*x^34
    -67351*x^33 -61223*x^32 +3440*x^31 +91*x^30 -40746*x^29 -103061*x^28 -115084*x^27 -94543*x^26 -59162*x^25 -2547*x^24 +37784*x^23 +58688*x^22 +53020*x^21 +43683*x^20 +26240*x^19 +6089*x^18 -3934*x^17 -5143*x^16 -3776*x^15 -3661*x^14 -1868*x^13 -975*x^12 -827*x^11 -517*x^10 -330*x^9 -23*x^8 +64*x^7 -3*x^6 -10*x^5 -5*x^4 -4*x^3 +5*x^2 +2*x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);

Formula

G.f.: see Maple program.