A238951 The number of arcs from odd to even level vertices in divisor lattice D(n).
0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 2, 2, 0, 3, 0, 3, 2, 2, 0, 5, 1, 2, 1, 3, 0, 6, 0, 2, 2, 2, 2, 6, 0, 2, 2, 5, 0, 6, 0, 3, 3, 2, 0, 6, 1, 3, 2, 3, 0, 5, 2, 5, 2, 2, 0, 10, 0, 2, 3, 3, 2, 6, 0, 3, 2, 6, 0, 8, 0, 2, 3, 3, 2, 6, 0, 6, 2, 2, 0, 10, 2, 2
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Sung-Hyuk Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014 (see 12th line in Table 1).
Programs
-
Maple
read("transforms"): omega := [seq(A001221(n), n=1..1000)] ; ones := [seq(1,n=1..1000)] ; a062799 := DIRICHLET(ones,omega) ; for n from 1 do a238951 := floor(op(n,a062799)/2) ; printf("%d %d\n",n,a238951) ; end do: # R. J. Mathar, May 28 2017