A238950 Number of arcs from even to odd level vertices in divisor lattice D(n).
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 2, 1, 5, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 2, 6, 1, 2, 2, 5, 1, 6, 1, 4, 4, 2, 1, 7, 1, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 10, 1, 2, 4, 3, 2, 6, 1, 4, 2, 6, 1, 9, 1, 2, 4, 4, 2, 6, 1, 7, 2, 2, 1, 10, 2, 2
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Sung-Hyuk Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014 (see 11th line in Table 1).
Programs
-
Maple
read("transforms") : omega := [seq(A001221(n), n=1..1000)] : ones := [seq(1,n=1..1000)] : a062799 := DIRICHLET(ones,omega) ; for n from 1 do a238951 := floor(op(n,a062799)/2) ; a238950 := op(n,a062799)-floor(op(n,a062799)/2) ; printf("%d %d\n",n,a238950) ; end do: # R. J. Mathar, May 28 2017