A238986 Ground Pyramidalized Numbers: Write the decimal digits of 'n' (a nonnegative integer) and take successive absolute differences ("pyramidalization"), then sum all digits of each level of the pyramid. If total is greater than 9, repeat the process until result is between 0 and 9, which is 'a(n)' (0 <= a(n) <= 9).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 4, 6, 8, 2, 4, 8, 4, 4, 4, 4, 4, 6, 8, 2, 4, 8, 4, 4, 6, 6, 6, 6, 8, 2, 4, 8, 4, 4, 8, 8, 8, 8, 8, 2, 4, 8, 4, 4, 2, 2, 2, 2, 2, 2, 4, 8, 4, 4
Offset: 0
Examples
If n=364, a(364)=4, for... . ____1 __3_:_2__ -->b'(364)=3+6+4+|3-6|+|6-4|+||3-6|-|6-4||=3+6+4+3+2+1=19>9 3_:_6_:_4 . __8 1_:_9 --> b''(364)=1+9|1-9|=1+9+8=18>9 . __7 1_:_8 --> b'''(364)=1+8+|1-8|=1+8+7=16>9 . __5 1_:_6 --> b''''(364)=1+6+|1-6|=1+6+5=12>9 . __1 1_:_2 --> b'''''(364)=1+2+|1-2|=1+2+1=4=a(364)
Links
- Giovanni Resta, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A227876. The pyramidalization process is applied and reapplied to each term until the result reaches its "ground limit".
Cf. A007318. The pyramidalization process relates to Pascal's Triangle because it is done in the opposite direction (towards the top instead of the base), using the contrary operation (absolute difference instead of sum of the prior terms).
Programs
-
Mathematica
a[n_] := If[n < 10, n, Block[{d = IntegerDigits@ n, s}, s = Total@ d; While[Length@ d > 1, d = Abs@ Differences@ d; s += Total@d]; If[s < 10, s, a@s]]]; a /@ Range[0, 99] (* Giovanni Resta, Mar 16 2014 *)
Formula
a(n)=n, if 0<=n<=9;
b'(n)=n-9*floor(n/10)+|-n+11*floor(n/10)|, if 10<=n<=99;
b'(n)=a(n), if 0<=b'(n)<=9;
else, b''(n)=b'(n)-9*floor(b'(n)/10)+|-b'(n)+11*floor(b'(n)/10)|;
b''(n)=a(n), if 0<=b''(n)<=9;
else, b'''(n)=...
c'(n)=n-9*floor(n/10)-9*floor(n/100)+|-floor(n/10)+11*floor(n/100)|+|-n+11*floor(n/10)-10*floor(n/100)|+||-floor(n/10)+11*floor(n/100)|-|-n+11*floor(n/10)-10*floor(n/100)||, if 100<=n<=999.
c'(n)=a(n), if 0<=c'(n)<=9;
else, if 10<=c'(n)<=99, c''(n)=c'(n)-9*floor(c'(n)/10)+|-c'(n)+11*floor(c'(n)/10)|;
c''(n)=a(n), if 0<=c''(n)<=9
else, ...
Comments