cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238998 Number of partitions of n that such that no part is a Fibonacci number.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 2, 4, 4, 6, 5, 9, 8, 11, 11, 16, 16, 22, 22, 29, 31, 40, 42, 54, 57, 71, 77, 95, 103, 127, 137, 165, 182, 218, 238, 285, 313, 369, 408, 479, 530, 619, 684, 794, 883, 1019, 1130, 1304, 1446, 1658, 1843, 2107, 2340, 2670
Offset: 0

Views

Author

Clark Kimberling, Mar 08 2014

Keywords

Examples

			a(15) counts these partitions:  [15], [11,4], [9,6], [7,4,4]; a(16) counts these:  [16], [12,4], [10,6], [9,7], [6,6,4], [4,4,4,4].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`((f-> issqr(f+4) or issqr(f-4))(5*d^2), 0, d),
            d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    p[n_] := IntegerPartitions[n, All, Complement[Range@n, Fibonacci@Range@15]]; Table[p[n], {n, 0, 20}] (* shows partitions *)
    a[n_] := Length@p@n; a /@ Range[0, 80] (* counts partitions *)
    (* Second program: *)
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[
        If[Function[f, IntegerQ@Sqrt[f+4] || IntegerQ@Sqrt[f-4]][5*d^2], 0, d],
        {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
    a /@ Range[0, 100] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N); Vec( prod(n=1,11,1-q^fibonacci(n+1))/eta(q) ) \\ Joerg Arndt, Mar 11 2014

Formula

G.f.: A(x) = sum(1/product(1 - x^c(i))), i >=1, where c(i) are the non-Fibonacci numbers.