A239512
Irregular triangular array read by rows: row n gives a list of the partitions of the Lucas numbers.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1
Offset: 1
The first 7 rows:
1
1 1
3 1 1 1
4 3 1 1 1 1 1
4 1 3 1 1 1 1 1 1 1
4 1 1 3 3 3 1 1 1 1 1 1 1 1 1
7 4 3 4 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1
The first 7 rows represent these partitions:
1
11
3, 111
4, 31, 1111
41, 311, 11111
411, 33, 3111, 111111
7, 43, 431, 41111, 3311, 311111, 1111111
-
LucasQ[n_] := IntegerQ[Sqrt[5 n^2 + 20]] || IntegerQ[Sqrt[5 n^2 - 20]];
Attributes[LucasQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ LucasQ[#] &] &, Range[0, 12]]] (* A239512, partitions *)
Flatten[t] (* A067592 *)
(* Peter J. C. Moses, Mar 24 2014 *)
A240224
Irregular triangular array read by rows: row n gives a list of the partitions of n into distinct Fibonacci numbers. The order of the partitions is like in Abramowitz-Stegun.
Original entry on oeis.org
1, 2, 3, 2, 1, 3, 1, 5, 3, 2, 5, 1, 3, 2, 1, 5, 2, 8, 5, 3, 5, 2, 1, 8, 1, 5, 3, 1, 8, 2, 5, 3, 2, 8, 3, 8, 2, 1, 5, 3, 2, 1, 8, 3, 1, 13, 8, 5, 8, 3, 2, 13, 1, 8, 5, 1, 8, 3, 2, 1, 13, 2, 8, 5, 2, 13, 3, 13, 2, 1, 8, 5, 3, 8, 5, 2, 1, 13, 3, 1, 8, 5, 3, 1, 13, 5, 13, 3, 2, 8, 5, 3, 2, 13, 5, 1, 13, 3, 2, 1, 8, 5, 3, 2, 1, 13, 5, 2
Offset: 1
The array with separated partitions begins:
n\k 1 2 3 4 5 ...
1: 1
2: 2
3: 3 2,1
4: 3,1
5: 5 3,2
6: 5,1 3,2,1
7: 5,2
8: 8 5,3 5,2,1
9: 8,1 5,3,1
10: 8,2 5,3,2
11: 8,3 8,2,1 5,3,2,1
12: 8,3,1
13: 13 8,5 8,3,2
14: 13,1 8,5,1 8,3,2,1
15: 13,2 8,5,2
16: 13,3 13,2,1 8,5,3 8,5,2,1
17: 13,3,1 8,5,3,1
18: 13,5 13,3,2 8,5,3,2
19: 13,5,1 13,3,2,1 8,5,3,2,1
20: 13,5,2
21: 21 13,8 13,5,3 13,5,2,1
22: 21,1 13,8,1 13,5,3,1
23: 21,2 13,8,2 13,5,3,2
24: 21,3 21,2,1 13,8,3 13,8,2,1 13,5,3,2,1
25: 21,3,1 13,8,3,1
...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Showing 1-2 of 2 results.
Comments