A239002 Number of partitions of n into distinct parts all of which are Fibonacci numbers greater than 1.
1, 0, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 3, 0, 2, 2, 0, 3, 0, 1, 3, 0, 3, 2, 0, 4, 0, 2, 3, 0, 3, 1, 0, 4, 0, 3, 3, 0, 5, 0, 2, 4, 0, 4, 2, 0, 5, 0, 3, 3, 0, 4, 0, 1, 4, 0, 4, 3, 0, 6, 0, 3, 5, 0, 5, 2, 0, 6, 0, 4, 4, 0, 6, 0, 2, 5, 0, 5, 3, 0, 6, 0, 3, 4, 0, 4
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10946
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<3, 0, b(n, i-1)+`if`(F(i)>n, 0, b(n-F(i), i-1)))) end: a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1) while F(j+1)<=n do od; b(n, j) end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 15 2014
-
Mathematica
f = Table[Fibonacci[n], {n, 3, 75}]; b[n_] := SeriesCoefficient[Product[1 + x^f[[k]], {k, n}], {x, 0, n}]; u = Table[b[n], {n, 0, 60}] (* A239002 *) Flatten[Position[u, 0]] (* A001950 *)
Formula
G.f.: Product_{i>=3} (1+x^Fibonacci(i)). - Alois P. Heinz, Mar 15 2014
Comments