A239049 Decimal expansion of Pi*(2/3)^(1/2).
2, 5, 6, 5, 0, 9, 9, 6, 6, 0, 3, 2, 3, 7, 2, 8, 1, 9, 1, 0, 8, 8, 0, 7, 2, 7, 1, 9, 3, 4, 2, 0, 1, 2, 8, 2, 2, 9, 3, 4, 5, 2, 1, 3, 3, 5, 1, 2, 8, 1, 8, 4, 6, 4, 6, 2, 0, 2, 7, 7, 9, 2, 1, 3, 5, 1, 2, 7, 9, 7, 6, 4, 7, 0, 2, 6, 0, 4, 4, 2, 0, 2, 0, 6, 6, 5, 7, 3, 8, 3, 8, 1, 0, 4, 7, 8, 8, 8, 8, 1, 4, 9, 0, 3, 1
Offset: 1
Examples
2.5650996603237281910880727193420128229345213351281846...
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 117.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- S. DeSalvo and I. Pak, Log-concavity of the partition function, arXiv:1310.7982v1 [math.CO], 2013-2014.
- Steven Finch, Integer Partitions, Sep 22 2004. [Cached copy, with permission of the author]
- Index entries for transcendental numbers
Crossrefs
Cf. A000796.
Programs
-
Magma
R:=RealField(); Pi(R)*Sqrt(2/3); // G. C. Greubel, Mar 31 2018
-
Maple
evalf(Pi*(2/3)^(1/2), 120) # Vaclav Kotesovec, Oct 17 2014
-
Mathematica
RealDigits[Pi*Sqrt[2/3], 10, 100][[1]] (* G. C. Greubel, Mar 31 2018 *)
-
PARI
Pi*sqrt(2/3) \\ G. C. Greubel, Mar 31 2018
Extensions
More terms from Vaclav Kotesovec, Oct 17 2014
Comments