A239062 Number of integers x, 1 <= x <= n, such that x^x == 0 (mod n).
1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 7, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 15, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 31, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 26, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 10, 1, 1, 1, 4, 1
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Sep 23 2017: (Start) Table of records a(n) and first positions n: i n a(n) ------------------- 1 1 1 2 4 2 3 8 3 4 16 7 5 27 9 6 32 15 7 64 31 8 128 62 9 243 80 10 256 126 11 512 253 12 1024 509 13 2048 1020 14 4096 2044 15 6561 2185 16 8192 4092 17 16384 8188 (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
gg0[n_] := Sum[If[Mod[x^x , n] == 0, 1, 0], {x, n}];Array[gg0,200] (* or *) Array[Sum[Boole[PowerMod[x, x, #] == 0], {x, #}] &, 10^4] (* or *) Table[Count[Range@ n, k_ /; PowerMod[k, k, n] == 0], {n, 200}] (* Michael De Vlieger, Sep 23 2017 *)
-
PARI
A239062(n) = sum(x=1,n, if(0 == Mod(x^x, n), 1, 0)); \\ Antti Karttunen, Sep 23 2017, after the Mathematica-program.
Extensions
More terms from Antti Karttunen, Sep 23 2017