A239074 Given a circle of radius R into which small circles of radius R/2^n are packed in a "hexagonal pattern" (see Comments), a(n) is the number of points at which a small circle is tangent to the big circle.
2, 2, 6, 2, 6, 6, 6, 2, 18, 6, 2, 18, 6, 18, 54, 2, 6, 54, 6, 6, 90, 2, 2, 54, 54, 18, 54, 18, 6, 162, 6, 2, 18, 6, 18, 1458, 18, 18, 162, 18, 2, 810, 6, 18, 1458, 2, 6, 486, 18, 162, 486, 54, 6, 486, 18, 54, 162, 18, 2, 4374, 6, 18, 2430, 6, 54, 162, 18, 18, 18, 54
Offset: 1
Keywords
Examples
n=9 (see the link): In the first quadrant, shown there, there are 4 touching points with the large circle for rows x > 0, namely for the rows 52, 132, 280 and 292. With the trivial 2 touching points with the large circle for the row x=0 this adds to the total number 2 + 4*4 = 18 = a(9). - _Wolfdieter Lang_, Apr 06 2014
Links
- Kival Ngaokrajang, Illustration of initial terms
- Kival Ngaokrajang, Illustration for n = 9
Programs
-
Mathematica
a[1] = 2; a[n_] := Module[{f = FactorInteger[2^n - 1]}, 2*Product[If[Mod[ f[[i, 1]], 3] == 1, 2*f[[i, 2]] + 1, 1] , {i, 1, Length[f]}]]; Array[a, 70] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
-
PARI
a(n) = {my(f=factor(2^n-1)); 2*prod(i=1, #f~, if(f[i, 1]%3==1, 2*f[i, 2]+1, 1))} \\ Andrew Howroyd, May 27 2018
Formula
a(n) = 2 + 4*A(n), n >= 1, with A(n) the number of integer solutions for x(n,j) = sqrt((2^n-1)^2 + 3*j^2), for j = 1, 2, ..., floor((2^n-1)/sqrt(3)). R = 2^n and r=1 (small radius) was used here. - Wolfdieter Lang, Apr 07 2014
a(n) = A033716((2^n - 1)^2). - Andrew Howroyd, May 27 2018
Extensions
Corrected and extended by Wolfdieter Lang, Apr 06 2014
a(26)-a(70) from Andrew Howroyd, May 27 2018
Comments