A239083 The sequence S = a(1), a(2), ... is defined by a(1)=1, if d,e,f are consecutive digits then we do not have d < e < f, and S is always extended with the smallest integer not yet present in S.
1, 2, 10, 3, 11, 4, 12, 13, 14, 15, 5, 6, 16, 17, 7, 8, 18, 19, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 200, 201, 121, 122, 130, 202
Offset: 1
References
- Eric Angelini, Posting to Sequence Fans Mailing List, Sep 28 2013
Links
- Gleb Ivanov, Table of n, a(n) for n = 1..10000
- Eric Angelini, Less than <, Equal to =, Greater than > (see sequence Sa)
- Eric Angelini, Less than <, Equal to =, Greater than > [Cached copy, with permission of the author] (see sequence Sa)
Crossrefs
Programs
-
Mathematica
a[1]=1;a[n_]:=a[n]=Block[{k=1},While[MemberQ[s=Array[a,n-1],k]||Or@@(#<#2<#3&@@@Partition[Flatten[IntegerDigits/@Join[s[[-2;;]],{k}]],3,1]),k++];k];Array[a,126] (* Giorgos Kalogeropoulos, May 13 2022 *)
-
Python
is_ok = lambda s: not any(s[i-2] < s[i-1] < s[i] for i in range(2, len(s))) terms, appears, digits = [1],{1},'1' for i in range(100): t = 1 while not(t not in appears and is_ok(digits + str(t))): t += 1 terms.append(t); appears.add(t); digits = digits + str(t) digits = digits[-2:] print(terms) # Gleb Ivanov, Dec 04 2021
Comments